The Belkale-Kumar cohomology of complete flag manifolds

Luca Francone and Nicolas Ressayre
Institut Camille Jordan
Université Lyon 1

Septembre $5^{\text {th }} 2023$
In honour of Michèle Vergne $80^{\text {th }}$ birthday

Cohomology of G/P

$$
\begin{aligned}
H^{*}(G / P, \mathbb{Z}) & =\bigoplus_{w \in W^{P}} \mathbb{Z}\left[X_{w}\right], \text { and } \\
{\left[X_{u}\right] \cdot\left[X_{v}\right] } & =\sum_{w \in W^{P}} c_{u v}^{w}\left[X_{w}\right] .
\end{aligned}
$$

It is graded by the degree:

Cohomology of G/P

$$
\begin{aligned}
H^{*}(G / P, \mathbb{Z}) & =\bigoplus_{w \in W^{P}} \mathbb{Z}\left[X_{w}\right], \text { and } \\
{\left[X_{u}\right] \cdot\left[X_{v}\right] } & =\sum_{w \in W^{P}} c_{u v}^{w}\left[X_{w}\right] .
\end{aligned}
$$

It is graded by the degree:
Setting $T_{w}:=T_{P / P} w^{-1} X_{w}$, if $c_{u v}^{w} \neq 0$ then

$$
\operatorname{dim}\left(T_{u}\right)+\operatorname{dim}\left(T_{v}\right)=\operatorname{dim}(G / P)+\operatorname{dim}\left(T_{w}\right),
$$

BK-produc on G / P

Consider the decomposition under the action of L :

$$
T_{P / P} G / P=V_{1} \oplus \cdots \oplus V_{s}
$$

Easily, if $T_{w}^{i}=V_{i} \cap T_{w}$, we have

$$
T_{w}=T_{w}^{1} \oplus \cdots \oplus T_{w}^{s}
$$

Hence, if $c_{u v}^{w} \neq 0$ then

$$
\sum_{i=1}^{s}\left(\operatorname{dim}\left(T_{u}^{i}\right)+\operatorname{dim}\left(T_{v}^{i}\right)\right)=\sum_{i=1}^{s}\left(\operatorname{dim}\left(V_{i}\right)+\operatorname{dim}\left(T_{w}^{i}\right)\right)
$$

BK-produc on G / P

Consider the decomposition under the action of L :

$$
T_{P / P} G / P=V_{1} \oplus \cdots \oplus V_{s}
$$

Easily, if $T_{w}^{i}=V_{i} \cap T_{w}$, we have

$$
T_{w}=T_{w}^{1} \oplus \cdots \oplus T_{w}^{s}
$$

Hence, if $c_{u v}^{w} \neq 0$ then

$$
\sum_{i=1}^{s}\left(\operatorname{dim}\left(T_{u}^{i}\right)+\operatorname{dim}\left(T_{v}^{i}\right)\right)=\sum_{i=1}^{s}\left(\operatorname{dim}\left(V_{i}\right)+\operatorname{dim}\left(T_{w}^{i}\right)\right)
$$

To get the BK-product, reinforce this condition replacing the sum by a $\forall i=1, \ldots$, s.

BK-produc on G / P

Theorem (Belkale-Kumar 2006)

Replacing $c_{u v}^{w}$ by 0 if

$$
\forall 1 \leq i \leq s \quad \operatorname{dim}\left(T_{u}^{i}\right)+\operatorname{dim}\left(T_{v}^{i}\right)=\operatorname{dim}\left(V_{i}\right)+\operatorname{dim}\left(T_{w}^{i}\right)
$$

does NOT hold and kepping the other ones unchanged, one gets a product \odot_{0} on $H^{*}(G / P, \mathbb{Z})$ that is still associative and satisfies Poincarré duality.

Eigencone

Let K, H, \mathfrak{k} and \mathfrak{h}. Then $\mathfrak{k} / K=\mathfrak{h}_{+}$. If $\lambda \in \mathfrak{h}_{+}, \mathcal{O}_{\lambda}$ denotes the adjoint orbit.

Let K, H, \mathfrak{k} and \mathfrak{h}. Then $\mathfrak{k} / K=\mathfrak{h}_{+}$. If $\lambda \in \mathfrak{h}_{+}, \mathcal{O}_{\lambda}$ denotes the adjoint orbit.
Set

$$
\Gamma(G)=\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in\left(\mathfrak{h}_{+}\right)^{3}:: \mathcal{O}_{\lambda_{1}}+\mathcal{O}_{\lambda_{2}}+\mathcal{O}_{\lambda_{3}} \ni 0\right\} .
$$

By Kirwan, $\Gamma(G)$ is a closed convex polyhedron.

Let K, H, \mathfrak{k} and \mathfrak{h}. Then $\mathfrak{k} / K=\mathfrak{h}_{+}$. If $\lambda \in \mathfrak{h}_{+}, \mathcal{O}_{\lambda}$ denotes the adjoint orbit.
Set

$$
\Gamma(G)=\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in\left(\mathfrak{h}_{+}\right)^{3}:: \mathcal{O}_{\lambda_{1}}+\mathcal{O}_{\lambda_{2}}+\mathcal{O}_{\lambda_{3}} \ni 0\right\} .
$$

By Kirwan, $\Gamma(G)$ is a closed convex polyhedron.

Theorem (Belkale-Kumar, R.)

The regular faces of $\Gamma(G)$ correspond bijectively with the structure coefficients of \odot_{0} equal to one, for the various G / P.

Our results

Theorem (Francone-R. 2023)

For G / B, the coefficients for \odot_{0} are 0 or 1 .
Numerous cases previously known by Richmond, R., Dimitrov-Roth, computer aided computations ... Completely new for E_{8}.

Our results

Theorem (Francone-R. 2023)

For G / B, the coefficients for \odot_{0} are 0 or 1 .
Numerous cases previously known by Richmond, R., Dimitrov-Roth, computer aided computations ... Completely new for E_{8}.

Theorem (Francone-R. 2023)

Let Φ_{1}, Φ_{2} and Φ_{3} be three biconvex subsets of Φ^{+}such that $\Phi_{3}=\Phi_{1} \sqcup \Phi_{2}$. Let β and γ be two positive roots such that
(1) $\beta \in \Phi_{1}$;
(2) $\gamma \notin \Phi_{3}$;
(3) $\gamma+\beta \in \Phi_{3}$.

Then $\Phi_{2} \cap[\beta ; \gamma]$ is empty.

Our results

Theorem (Francone-R. 2023)

For G / B, the coefficients for \odot_{0} are 0 or 1 .
Numerous cases previously known by Richmond, R., Dimitrov-Roth, computer aided computations ... Completely new for E_{8}.

Theorem (Francone-R. 2023)

Let Φ_{1}, Φ_{2} and Φ_{3} be three biconvex subsets of Φ^{+}such that $\Phi_{3}=\Phi_{1} \sqcup \Phi_{2}$. Let β and γ be two positive roots such that
(1) $\beta \in \Phi_{1}$;
(2) $\gamma \notin \Phi_{3}$;
(3) $\gamma+\beta \in \Phi_{3}$.

Then $\Phi_{2} \cap[\beta ; \gamma]$ is empty.
Proof : reduction to the rank 7, and a very long checking.

About the proof

Step 1: Sufficient to prove that some map η is birational. Start with u, v and w in W such that $\Phi(w)=\Phi(u) \sqcup \Phi(v)$, where $\Phi(w):=\Phi^{+} \cap w^{-1} \Phi^{-}$.
In general

$$
c_{u v}^{w}=\sharp g_{u} X_{u} \cap g_{v} X_{v} \cap g_{w} X_{w}{ }^{v}
$$

We have an incidence variety $\eta: \mathcal{X} \longrightarrow X:=(G / B)^{3}$ and want to prove that η is birational.

About the proof

Step 2 : Using G / B simply connected.
Let $R \subset \mathcal{X}$ be the (Weyl) ramification of η. Since X is simply connected, it is sufficient to prove that the codimenssion of $\eta(R)$ is at least 2.

About the proof

Step 2 : Using G / B simply connected.
Let $R \subset \mathcal{X}$ be the (Weyl) ramification of η. Since X is simply connected, it is sufficient to prove that the codimenssion of $\eta(R)$ is at least 2.
Step 3 : Construct an explicit open subset Ω where η is unramified.

About the proof

Step 4: Fix an irreducible component D of $\mathcal{X}-\Omega$.
Because of the form of Ω, D comes from a Schubert divisor in X_{u}, X_{v} or X_{w}. So, D comes from a Schubert covering relation, say of of u.

About the proof

Step 4: Fix an irreducible component D of $\mathcal{X}-\Omega$.
Because of the form of Ω, D comes from a Schubert divisor in X_{u}, X_{v} or X_{w}. So, D comes from a Schubert covering relation, say of of u.
Step 5: If it is the weak Bruhat order.
Prove by explicit computation of the tangent map that D is not a component of R.

About the proof

Step 6: D comes from a covering relation of the stroong Bruhat order.
To be proved: for any $x \in D$ the tangent map of $\eta_{\mid D}$ has a Kernel in $T_{x} D$. Let M be the matrix of the linerar map.

About the proof

Step 6: D comes from a covering relation of the stroong Bruhat order.
To be proved: for any $x \in D$ the tangent map of $\eta_{\mid D}$ has a Kernel in $T_{x} D$. Let M be the matrix of the linerar map.
Step 7: Dominance order gives zero entries in M. Sometimes sufficient to prove $\operatorname{Ker} M \neq\{0\}$. Sometimes we get square blocks M^{\prime} in M and have to prove that $\operatorname{det}\left(M^{\prime}\right)=0$.

About the proof

Step 6: D comes from a covering relation of the stroong Bruhat order.
To be proved: for any $x \in D$ the tangent map of $\eta_{\mid D}$ has a Kernel in $T_{x} D$. Let M be the matrix of the linerar map.
Step 7: Dominance order gives zero entries in M. Sometimes sufficient to prove $\operatorname{Ker} M \neq\{0\}$. Sometimes we get square blocks M^{\prime} in M and have to prove that $\operatorname{det}\left(M^{\prime}\right)=0$.
The trick consists in proving that $\operatorname{det}\left(M^{\prime}\right)=\operatorname{det}\left(N^{\prime}\right)$, for some similar matrix N occuring when one applies the process in the case of Poincaré duality.
In this last case η is biratiional. Hence $\operatorname{det}\left(N^{\prime}\right)=0$. The proof is ended.

Applications

1- Let $d(w)$ denote the number of descents of w. A descent is a simple rooot α such that $\ell\left(s_{\alpha} w\right)=\ell(w)-1$. Then,

$$
d(w)=d(u)+d(v) .
$$

Applications

1- Let $d(w)$ denote the number of descents of w. A descent is a simple rooot α such that $\ell\left(s_{\alpha} w\right)=\ell(w)-1$. Then,

$$
d(w)=d(u)+d(v)
$$

2- The regular faces of the eigencone of minimal dimension are simplicial cones.

Applications

1- Let $d(w)$ denote the number of descents of w. A descent is a simple rooot α such that $\ell\left(s_{\alpha} w\right)=\ell(w)-1$. Then,

$$
d(w)=d(u)+d(v)
$$

2- The regular faces of the eigencone of minimal dimension are simplicial cones.
3- A component of $V\left(\lambda_{1}\right) \otimes V\left(\lambda_{2}\right)$ is said to be cohomological if comes from the surjectivity of some cup product map:
$\mathrm{H}^{\ell\left(w_{1}\right)}\left(G / B, \mathcal{L}\left(w_{1} \cdot \lambda_{1}\right)\right) \otimes \mathrm{H}^{\ell\left(w_{2}\right)}\left(G / B, \mathcal{L}\left(w_{2} \cdot \lambda_{2}\right)\right) \longrightarrow \mathrm{H}^{\ell\left(w_{3}^{\vee}\right)}\left(G / B, \mathcal{L}\left(w_{3}^{\vee}\right.\right.$
Our result implies that a component is cohomological if and only if it relongs to somme regular face of minimal dimension.

Come back to the situation of G / P. Given $u, v \in W^{P}$, set

$$
\Sigma_{u}^{v}:=\overline{u^{-1} X_{u}^{\circ} \cap w_{0, P} v^{-1} X_{v}^{\circ}}
$$

The conjecture is

$$
\left[\Sigma_{u}^{v}\right]_{\odot_{0}}=\left[X_{u}\right] \odot_{0}\left[X_{v}\right]
$$

Thank you

HAPPY BIRTHDAY Michèle!

